
J, Appl. Maihr Me&, Vol. 58, No. 5, pp. 857-863, S&i 
Copyright @ 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0021~8928194 $24.00+ 0.00 

0021~8928(94)00111.1 

HOMOGENEOUS AUTONOMOUS SYSTEMS WITH 
THREE INDEPENDENT VARIABLES? 

S. V. MELESHKO 

Novosibirsk 

(Received 11 January 1994) 

Double-wave solutions of equations with three independent variables are studied. The case when a 

homogeneous autonomous system consisting of four independent quasilinear first-order differential 

equations can be formed to study compatibility is considered. All such systems having solutions with an 

arbitrary function that cannot be reduced to invariant ones are given and their solutions are found. 

The classification of solutions with degenerate hodograph is one of the fundamental problems of the 

theory of r-fold waves. From the point of view of the group properties of differential equations an r-fold 
wave is a partially invariant solution (PIS) with respect to a subgroup of the transformation group G”+l 

with Lie algebra L”” whose operator basis is [l] 

Soa=X,ai, 5ia=ai (i=1,2,...,n) 

where n is the number of independent variables. 
PISS that cannot be reduced to invariant ones are a special case. This is connected with the fact that the 

problem of constructing invariant solutions is much simpler than that of constructing PISS. Namely, apart 
from a similitude trailsfo~ation, two kinds of wave parameters (h’, . . . , X) are possible for an invariant 
r-fold wave [l]. 

A similitude transformation is defined by a linear transformation x’ = Vx of the independent variables 

with a non-singular nx~l square matrix V. Besides, a PIS involves a more complex analysis of the com- 
patibility of the resultiug overdetetmined systems than an invariant solution. It is therefore useful to 
elucidate in advance the form of irreducible multiple waves. In the literature there are only separate 
sufficient conditions for reducibility. For double waves Ovsyannikov’s theorem [I] on the reduction to 

invariant solutions plays a fundamental role. In particular, if n=3 and there are five independent 
autonomous first-order homogeneous quasilinear equations satisfied by the wave parameters, then such 

solutions can be reduced to invariant ones. 
Another key point in the study of solutions with degenerate hodograph is the investigation of the 

compatibility of overdetermined systems. Since the general analysis of the systems that arise presents 
difficulties, it has been carried out with additional assumptions regarding the solutions. Initially, these 
were kinematic and geometric conditions: it was assumed that the flow is a potential one or that the level 
curves are rectilinear [2-4]. We note that the requirement that the level curves should be rectilinear 

corresponds to a smaller invariance defect. Restrictions were also constructed on the basis of the 

algebraic structure of the system connected with so-called simple integral elements [5, 61. Since in each 
case one must analyse the compatibility of an overdetermined system, it is more natural from the 
viewpoint of compatibility theory to classify the solutions with degenerate hodograph depending on the 

presence of an arbitrary function in the general solution. 
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The study of solutions with an arbitrary function is based on the fact that every compatible system of 

differential equations is involutory after a finite number of extensions. If the system of differential 

equations is involutory, then the arbitrary function in the solution is determined by the Cartan characters, 

which are related in a certain way to the leading parametric derivatives. Thus, for a solution with an 
arbitrary function to exist it is necessary that the rank of the coefficient matrix multiplying the leading 
derivatives should be different from the total number of leading derivatives (for any extension). 

In the case of three independent variables the classification of double waves almost always involves the 
study of systems consisting of four first-order homogeneous quasi-linear equations 

Such systems and their solutions are studied below: all systems (0.1) having solutions with an arbitrary 

function that cannot be reduced to invariant ones are given and their general solutions are found. The 
present paper extends the results on the classification of multiple waves for the equations of gas dynamics 

and the theory of plasticity obtained in [7-lo]. 

1. EQUIVALENCE TRANSFORMATION 

Let u= (X, l.t) be the parameters of a double wave and let hi = ah/&x,, pi = &.tLl&~~ and 
y =(&, pi) (i= 1, 2,3). For system (0.1) the property of being homogeneous and autonomous 
is invariant under the following equivalence transformations: 

(a) the choice of wave parameters h’= I& p) and u’= M(h, p); 
(b) a non-singular linear transformation of the independent variables. 
By virtue of the double wave condition rank 13(x, u)/EyxI, x,, x3)= 2 it can be shown by 

means of equivalence transformation that any system (0.1) of four independent equations can 
be reduced to one of the following two forms 

h, =o, h, =o, p3=0 

h, + a(h, p)p.I + b(h, p&z = 0 (a2 + b2 f 0) (1.1) 

or 

u3 = Au,, ii.2 = Bu, 0.2) 

where A = (a,@. p)> and B = @~,~,,(h, JL)) are (2 x 2) square matrices. 

2. THE SOLUTION OF SYSTEM (1.1) 

On differentiating the last equation in (1.1) with respect to xj we obtain the equations 
(differentiation with respect to x, is denoted by a prime) 

Equations (1.1) and (2.1) imply the relationships 

( bkY2 - bh”) + A,h’p, = 0, - (axh’2- ah”) + A,I.‘u2 = 0 

(A, =abh-bal,) 

(2.2) 
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If A1 ;t 0, then expressions for J.L, and p2 can be found from Eqs (2.2). On substituting these 
expressions into (2.1), one can determine h”. Thus in the present case system (1.1) can have at 
most an arbitrary constant. It must therefore be assumed that A1 = 0. Then b = &)a (without 
loss of generality it is assumed that a f 0) and 

D&J&‘* -ah”)=~i(ng,h’~-a,h”)=O (i=1,2) 

(here and henceforth Di is the total derivative with respect to xi). Hence % -%u,, = 0 or 
a= $v with some functions Q = $(h) and w = w(p). By the equivalence transformation with 
dL = $-‘dh and dM = wdp, these functions can be reduced to $ = w = 1. Then (1.1) becomes a 
decoupled system. We get h = CX,, where ~$0 is an arbitrary constant, which, by the 
equivalence transformation is unimportant. For p we have the equation p, + g(p)p, = -c, which 
can be integrated in the standard manner [ll]. 

Theorem 1. All systems (1.1) having solutions with an arbitrary function are equivalent to 
the system 

h=Xg. CL, + &L)P2 = -1 

3. THE SOLUTION OF SYSTEM (1.2) 

First we note that 

D2(uj,-Au,)-Q(u2-bbu,)eGu,,-C(u,,u,)=O (3.1) 

Here G = AB- BA with elements 

&I = -g22 = a,,b2, - a2142 

~2 =a,2@22 -4,)-42b22 -a~,>, g2, =-a2,@22 -b,,)+b2,@22 -a,,) 

C is a bilinear mapping, whose coordinates are determined by A and B and their derivatives 
with respect to h and p. 

If detG #O then the solution of system (1.2) can have at most an arbitrary constant. Since 
systems having solutions with an arbitrary function are considered, it must be assumed that 
det G = 0, i.e. 

w+,(b,, +,I2 -h&, +a,,b,,>(92 -b,,Xa,, -a,,)+b&,(u22 -ad2 -A2 =O 

(A = 92~ - bnb2, ) 
(3.2) 

If a,,&,A f 0, then (3.2) implies that (4 -ulJ’ +4a,2%,, 20. Under this condition A has real 
eigenvalues. This case is studied separately below. 

If u,,a,,A = 0, then either a12azl = 0, and so A also has real eigenvalues, or 

A = 0, a12a21 +o (3.3) 

In the latter case G = 0. But then (3.1) contains two homogeneous quadratic forms with respect 
to % = (h,, cl,) 

C(q,q)=O (3.4) 

If at least one of the coefficients of the quadratic forms (3.4) is non-zero, it gives rise to a 
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fifth first-order homogeneous autonomous quasilinear equation and, by the reduction theorem 
(11, such solutions can be reduced to invariant ones. In this case one must therefore assume 
that C = 0. Since 42%1 f 0 by assumption, (3.2)-(3.4) yield the relationships 

(3.5) 

Under these conditions, system (1.2) is involutory with two arbitrary functions of one 
argument in the solution. 

Theorem 2. Apart from equivalence transformations, system (1.2) has solutions with an 
arbitrary function that cannot be reduced to invariant ones only if A has real eigenvalues or 
conditions (3.5) are satisfied. 

Below we consider the case when A has real eigenvalues. 

Remark. The classification of double waves considered in all the papers known to us can be reduced to 

analysing the solutions of system (1.2) when A has real eigenvalues. In many of these publications this 
property is not pointed out explicitly. It is a consequence of the following. The classification of double 
waves involves transferring to the hodograph space x1 = P(h, JA, .x3), x2 =Q(h, p, x,), followed by 
obtaining a second-order degenerate algebraic equation in ~3Plih, and aQ/ax,, which splits into the 
product of two linear forms. It can be shown that this is only possible if A has real eigenvalues. 

Now, let A have real eigenvalues. Without loss of generality (by the equivalence transforma- 
tions) A can be assumed to be a Jordan matrix. Here it is necessary to distinguish between the 
two possibilities when A has a triangular or diagonal form. Different cases must be studied 
depending on the value of rank G. 

We initially consider the case when rank G = 0, i.e. G = 0. If q2 = 1, then a, = 4, and (3.5) 
can be obtained from C = 0. For 4, = 0 and for solutions irreducible to invariant ones it fol- 
lows that %I = & = b,, = 0 and 

(022 --a111 
?$_(b22 -b,,)3= 0 262, (a,, -all)~-(b22 -b,,)~=O (3.6) 

Under these conditions system (1.2) is also involutory with two arbitrary functions of one 
argument in the solution. 

Now, let rankG = 1. If A has the triangular form (%2 = u,,, 4, = 1. a*, = 0), then 

C= II 621 b2z -4, 

0 -4, 

and so b,, = 0 and bu - 4, # 0. Thus B can be reduced to diagonal form. But then, by means of 
an equivalence transformation, the study of this case can be reduced to the case when A is 
diagonal, which is considered below. 

For a diagonal matrix A we get 

G=b,, -0,1)/l ;, -;2 11 
Since rankG = 1, it follows that a, - 4,, f 0 and b12bzI = 0. Below it is assumed, without loss of 
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generality, that b12 = 0 and b,, f 0. 
Then the first equation in (3.1) has the form 

Hence, by irreducibility, we find that 

a11 =a,,(~), 4, = bl,(hl 

Moreover, the second equation in (3.1) can be written as 

(3.7) 

b=$-’ C&2 -b,,k$-- au22 9, h2 ab2, --(a,, -a,,)- 
ah ah 1 

If b f 0, the relationships 

D&l --ah: -bh;C11)-44(h,-~,~h,)=O 

4@,, -atz: -bhl@,)-D@,(hz -b,&,)=O (3.8) 

can be used to determine ltl1, which leads to solutions having arbitrary constants only. One 
must therefore assume that 

b=O (3.9) 

All second-order derivatives are then eliminated in (3.9). They represent two homogeneous 
quadratic forms with respect to ~1~. From irreducibility and (3.8) we therefore get 

au,, a% u-+-J=& u$L+i?!&o, $=. 
ah ah2 

(3.10) 

Equations (3.9) and (3.10) ensure that system (2.1) is involutory with one arbitrary function 
of a single argument, and, in order to determine the solution, it is necessary to study the 
following three cases: (a) aI, f 0, (b) 41 = 0, b,i + 0, and (c) al, = 0, bll = 0. 

If G& # 0, then we find from (3.10) that bxl = qq, + cz with certain constants c, and c,. After 
the linear transformation xl = x1 + c,x,, xi = x, and xj = x, +c,x, of the independent variables it 
follows that & = 0 in system (1.2) written in the new system of coordinates. 

By (3.10), we find from (1.2) and (3.7) that q,(h)= -x1 /.x3, apart from translations with 
respect to the independent variables. On applying the equivalence transformation k’= -+1(k) 
and u’=p, we determine from (3.10) that a=0 in the new variables (h’, p’), which yields 
&/ah f 0 and a, =-h- b,,(db,, /dh)-‘. Here and below the prime is omitted. The integral 
(3.9) will be 

bz = (a22 + W-ah, 1 acL + bz,wW (3.11) 

where w(p) is an arbitrary function. By the equivalence transformation h’ = h and p’= f@) 
with f(p) satisfying the equation f’+vf” = 0, one can assume that w = 0 in (3.11). Reducing 
the remaining two equations in (1.2) to a homogeneous linear system by the standard method 
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[ll], we obtain its solution @(p-b,,x,/x,, bzl lx,)=0 with an arbitrary function @(cl, 5,) 
(5, =p-b,,x, Ix,, 4, = bzl /x3). If oC2 = 0, then the solution is invariant. One must therefore 
assume that ac, # 0. Finally, we observe that the resulting solution has a defect 6 = 1. 

Cases (b) and (c) can be studied in a similar way. Here we will give just an outline. By the 
equivalence transformations one can assume that 4, = 0 in both these cases, bn =-h in case 
(b), and bn = 0 in case (c). It follows that A,, = 0 in both cases. Since we also have a = b;;db,, / 
&i = 0, it follows that bzl = f(p). But then blz becomes bzl = 1 under the transformation h’ = h, 
u’= Jf-l(u)&. In order that there should be no reduction to invariant solutions, it is necessary 
that $,, f 0. If we set & = 1 /uz2, then Eq. (3.9) gives rise to expressions for bs2. Then, reducing 
the remaining two equations in system (1.2) to a homogeneous linear system, we can find its 
solution. 

The following theorem is therefore true. 

Theorem 3. Let A in system (1.2) have real eigenvalues. Then systems of the form (1.2) 
having solutions with an arbitrary function that are irreducible to invariant ones are equivalent 
to one of the following systems 

(a) with coefficients (b,,(&,,, /ah) f 0) 

ab,, ab,, -’ 
, b22=b2,- 

(-1 au ah 

and the general solution 

h=x, lx,, @(p-b+2 l+b,, /x3)=0 

(b) with coefficients 

~II ~0, 4, =-A, a22 =l/$,, 62, =L q2 =-h+(q~,+y~‘~-q/~~ 

and the general solution 

h=x, 1x2, @((x3 1 x2 + O)ep + \y, x2e+) = 0 

(c) with coefficients 

alI =O, 4, =O, a22 =ll$,, b,, =I, b,, =$,/$n 

and the general solution 

A = x* ) @(p---2,x3++)=0 

(d) with coefficients satisfying (3.6) and a general solution having two arbitrary functions of 
one argument. 

Here CD = (o(&, &), + = $(A, u) and w = w(u) are arbitrary functions and Qt # 0. In case (d) 
system (1.2) is said to be written in terms of Riemannian invariants. In [6] the condition that 
the system be written in terms of Riemannian invariants is required in the definition of a 
double wave. 

The work reported here was carried out with financial support from the Russian Fund for 
Fundamental Research (939-013-17361). 
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